Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Basic Microbiol ; : e202400023, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558182

RESUMO

P0 proteins encoded by the pepper vein yellow virus (PeVYV) are pathogenic factors that cause hypersensitive response (HR). However, the host gene expression related to PeVYV P0-induced HR has not been thoroughly studied. Transcriptomic technology was used to investigate the host pathways mediated by the PeVYV P0 protein to explore the molecular mechanisms underlying its function. We found 12,638 differentially expressed genes (DEGs); 6784 and 5854 genes were significantly upregulated and downregulated, respectively. Transcriptomic and reverse-transcription quantitative polymerase chain reaction (RT-qPCR) analyses revealed that salicylic acid (SA) and jasmonic acid (JA) synthesis-related gene expression was upregulated, and ethylene synthesis-related gene expression was downregulated. Ultrahigh performance liquid chromatography-tandem mass spectrometry was used to quantify SA and JA concentrations in Nicotiana benthamiana, and the P0 protein induced SA and JA biosynthesis. We then hypothesized that the pathogenic activity of the P0 protein might be owing to proteins related to host hormones in the SA and JA pathways, modulating host resistance at different times. Viral gene silencing suppression technology was used in N. benthamiana to characterize candidate proteins, and downregulating NbHERC3 (Homologous to E6-AP carboxy-terminus domain and regulator of choromosome condensation-1 dmain protein 3) accelerated cell necrosis in the host. The downregulation of NbCRR reduced cell death, while that of NbBax induced necrosis and curled heart leaves. Our findings indicate that NbHERC3, NbBax, and NbCRR are involved in P0 protein-driven cell necrosis.

2.
Virus Res ; 339: 199256, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37898320

RESUMO

Endornaviruses are known to occur widely in plants, fungi, and oomycetes, but our understanding of their diversity and distribution is limited. In this study, we report the discovery of four endornaviruses tentatively named Setosphaeria turcica endornavirus 1 (StEV1), Setosphaeria turcica endornavirus 2 (StEV2), Bipolaris maydis endornavirus 1 (BmEV1), and Bipolaris maydis endornavirus 2 (BmEV2). StEV1 and StEV2 infect Exserohilum turcicum, while BmEV1 and BmEV2 infect Bipolaris maydis. The four viruses encode a polyprotein with less than 40 % amino acid sequence identity to other known endornaviruses, indicating that they are novel, previously undescribed endornaviruses. However, StEV1 and BmEV1 share a sequence identity of 78 % at the full-genome level and 87 % at the polyprotein level, suggesting that they may belong to the same species. Our study also found that each of the four endornaviruses has an incidence of approximately 3.5 % to 5.5 % in E. turcicum or B. maydis. Interestingly, BmEV1 and BmEV2 were found to be unable to transmit between hosts of different vegetative incompatibility groups, which may explain their low incidence.


Assuntos
Ascomicetos , Vírus de RNA , Incidência , Filogenia , Ascomicetos/genética , Vírus de RNA/genética , Poliproteínas/genética
3.
Front Microbiol ; 14: 1229294, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840714

RESUMO

Copper hydroxide is a broad-spectrum copper fungicide, which is often used to control crop fungal and bacterial diseases. In addition to controlling targeted pathogens, copper hydroxide may also affect other non-targeted microorganisms in the phyllosphere ecosystem. At four time points (before spraying, and 5, 10 and 15 days after fungicide application), the response of diseased and healthy tobacco phyllosphere microorganisms to copper hydroxide stress was studied by using Illumina high-throughput sequencing technology, and Biolog tools. The results showed that the microbiome communities of the healthy group were more affected than the disease group, and the fungal community was more sensitive than the bacterial community. The most common genera in the disease group were Alternaria, Boeremia, Cladosporium, Pantoea, Ralstonia, Pseudomonas, and Sphingomonas; while in the healthy group, these were Alternaria, Cladosporium, Symmetrospora, Ralstonia, and Pantoea. After spraying, the alpha diversity of the fungal community decreased at 5 days for both healthy and diseased groups, and then showed an increasing trend, with a significant increase at 15 days for the healthy group. The alpha diversity of bacterial community in healthy and diseased groups increased at 15 days, and the healthy group had a significant difference. The relative abundance of Alternaria and Cladosporium decreased while that of Boeremia, Stagonosporopsis, Symmetrospora, Epicoccum and Phoma increased in the fungal communities of healthy and diseased leaves. The relative abundance of Pantoea decreased first and then increased, while that of Ralstonia, Pseudomonas and Sphingomonas increased first and then decreased in the bacterial communities of healthy and diseased leaves. While copper hydroxide reduced the relative abundance of pathogenic fungi Alternaria and Cladosporium, it also resulted in the decrease of beneficial bacteria such as Actinomycetes and Pantoea, and the increase of potential pathogens such as Boeremia and Stagonosporopsis. After treatment with copper hydroxide, the metabolic capacity of the diseased group improved, while that of the healthy group was significantly suppressed, with a gradual recovery of metabolic activity as the application time extended. The results revealed changes in microbial community composition and metabolic function of healthy and diseased tobacco under copper hydroxide stress, providing a theoretical basis for future studies on microecological protection of phyllosphere.

4.
Adv Healthc Mater ; 12(29): e2301586, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37506713

RESUMO

The fiber structures of tumor microenvironment (TME) are well-known in regulating tumor cell behaviors, and the plastic remolding of TME has recently been suggested to enhance tumor metastasis as well. However, the interrelationship between the fiber microarchitecture and matrix plasticity is inextricable by existing in vitro models. The individual roles of fiber microarchitecture and matrix plasticity in tuning tumor cell behaviors remain elusive. This study develops an interpenetrating collagen-alginate hydrogel platform with independently tunable matrix plasticity and fiber microarchitecture through an interpenetrating strategy of alginate networks and collagen I networks. With this hydrogel platform, it is demonstrated that tumor cells in high plasticity hydrogels are more extensive and aggressive than in low plasticity hydrogels and fiber structures only have influence in high plasticity hydrogels. The study further elucidates the underlying mechanisms through analyzing the distribution of forces within the matrix and tracking the focal adhesions (FAs) and finds that highly plastic hydrogels can activate the FAs formation, whereas the maturation and stability of FAs are dominated by fiber dispersion. This study not only establishes new ideas on how cells interact with TME cues but also would help to further finely tailor engineered hydrogel platforms for studying tumor behaviors in vitro.


Assuntos
Alginatos , Hidrogéis , Hidrogéis/química , Alginatos/química , Colágeno/química , Colágeno Tipo I/química , Movimento Celular , Matriz Extracelular
5.
Front Microbiol ; 14: 1151747, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056753

RESUMO

Introduction: Tomato chlorosis virus (ToCV) is a typical member of the genus Crinivirus, which severely threatens Solanaceae crops worldwide. The CPm protein encoded by ToCV has been reported to be associated with virus transmission by vectors and is involved in RNA silencing suppression, while the mechanisms remain ambiguous. Methods: Here, ToCV CPm was ectopically expressed by a Potato virus X (PVX) vector and infiltrated into Nicotiana benthamiana wild-type and GFP-transgenic16c plants. Results: The phylogenetic analysis showed that the CPm proteins encoded by criniviruses were distinctly divergent in amino acid sequences and predicted conserved domains, and the ToCV CPm protein possesses a conserved domain homologous to the TIGR02569 family protein, which does not occur in other criniviruses. Ectopic expression of ToCV CPm using a PVX vector resulted in severe mosaic symptoms followed by a hypersensitive-like response in N. benthamiana. Furthermore, agroinfiltration assays in N. benthamiana wilt type or GFP-transgenic 16c indicated that ToCV CPm protein effectively suppressed local RNA silencing induced by single-stranded but not double-stranded RNA, which probably resulted from the activity of binding double-stranded but not single-stranded RNA by ToCV CPm protein. Conclusion: Taken together, the results of this study suggest that the ToCV CPm protein possesses the dual activities of pathogenicity and RNA silencing, which might inhibit host post-transcriptional gene silencing (PTGS)-mediated resistance and is pivotal in the primary process of ToCV infecting hosts.

6.
Front Genet ; 14: 1290466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259624

RESUMO

Potato virus Y (PVY) disease is a global problem that causes significant damage to crop quality and yield. As traditional chemical control methods are ineffective against PVY, it is crucial to explore new control strategies. MicroRNAs (miRNAs) play a crucial role in plant and animal defense responses to biotic and abiotic stresses. These endogenous miRNAs act as a link between antiviral gene pathways and host immunity. Several miRNAs target plant immune genes and are involved in the virus infection process. In this study, we conducted small RNA sequencing and transcriptome sequencing on healthy and PVY-infected N. benthamiana tissues (roots, stems, and leaves). Through bioinformatics analysis, we predicted potential targets of differentially expressed miRNAs using the N. benthamiana reference genome and the PVY genome. We then compared the identified differentially expressed mRNAs with the predicted target genes to uncover the complex relationships between miRNAs and their targets. This study successfully constructed a miRNA-mRNA network through the joint analysis of Small RNA sequencing and transcriptome sequencing, which unveiled potential miRNA targets and identified potential binding sites of miRNAs on the PVY genome. This miRNA-mRNA regulatory network suggests the involvement of miRNAs in the virus infection process.

7.
Biomacromolecules ; 23(7): 2767-2777, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35749573

RESUMO

Simultaneously being a nonradiative and noninvasive technique makes magnetic resonance imaging (MRI) one of the highly required imaging approaches for the early diagnosis and follow-up of tumors, specifically for brain cancer. Paramagnetic gadolinium (Gd)-based contrast agents (CAs) are the most widely used ones in brain MRI acquisitions with special interest when assessing blood-brain barrier (BBB) integrity, a characteristic of high-grade tumors. However, alternatives to Gd-based contrast agents (CAs) are highly required to overcome their established toxicity. Organic radicals anchored on a dendrimer macromolecule surface (radical dendrimers) are promising alternatives since they also exhibit paramagnetic properties and can act as T1 CAs like Gd-based CAs while being organic species (mitigating concerns about toxic metal accumulation). Here, we studied the third generation of a water-soluble family of poly(phosphorhydrazone) radical dendrimers, with 48 PROXYL radical units anchored on their branches, exploring their potential of ex vivo and in vivo contrast enhancement in brain tumors (in particular, of immunocompetent, orthotopic GL261 murine glioblastoma (GB)). Remarkably, this radical species provides suitable contrast enhancement on murine GL261 GB tumors, which was comparable to that of commercial Gd-based CAs (at standard dose 0.1 mmol/kg), even at its 4 times lower administered dose (0.025 mmol/kg). Importantly, no signs of toxicity were detected in vivo. In addition, it showed a selective accumulation in brain tumor tissues, exhibiting longer retention within the tumor, which allows performing imaging acquisition over longer time frames (≥2.5 h) as opposed to Gd chelates. Finally, we observed high stability of the radicals in biological media, on the order of hours instead of minutes, characteristic of the isolated radicals. All of these features allow us to suggest that the G3-Tyr-PROXYL-ONa radical dendrimer could be a viable alternative to metal-based MRI contrast agents, particularly on MRI analysis of GB, representing, to the best of our knowledge, the first case of organic radical species used for this purpose and one of the very few examples of these types of radical species working as MRI CAs in vivo.


Assuntos
Neoplasias Encefálicas , Dendrímeros , Glioblastoma , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Meios de Contraste , Radicais Livres , Glioblastoma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Metais , Camundongos
8.
Tissue Eng Regen Med ; 19(4): 823-837, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35467329

RESUMO

BACKGROUND: Although newly formed constructs of feasible pressure-preadjusted bone marrow mesenchymal stem cells (BMSCs) and platelet-rich fibrin (PRF) showed biomechanical flexibility and superior capacity for cartilage regeneration, it is still not very clear how BMSCs and seed cells feel mechanical stimuli and convert them into biological signals, and the difference in signal transduction underlying mechanical and chemical cues is also unclear. METHODS: To determine whether mechanical stimulation (hydrostatic pressure) and chemical cues (platelet-rich fibrin, PRF) activate canonical or noncanonical Wnt signaling in BMSCs, BMSCs cocultured with PRF were subjected to hydrostatic pressure loading, and the activation of the Wnt signaling molecules and expression of cartilage-associated proteins and genes were determined by western blotting and polymerase chain reaction (PCR). Inhibitors of canonical or noncanonical Wnt signaling, XVX-939 or L690,330, were adopted to investigate the role of Wnt signaling molecules in mechanically promoted chondrogenic differentiation of BMSCs. RESULTS: Hydrostatic pressure of 120 kPa activated both Wnt/ß-catenin signaling and Wnt/Ca2+ signaling, with the the maximum promotion effect at 60 min. PRF exerted no synergistic effect on Wnt/ß-catenin signaling activation. However, the growth factors released by PRF might reverse the promotion effects of pressure on Wnt/Ca2+ signaling. Real-time PCR and Western blotting results showed that pressure could activate the expression of Col-II, Sox9, and aggrecan in BMSCs cocultured with PRF. Blocking experiment found a positive role of Wnt/ß-catenin signaling, and a negative role of Wnt/Ca2+ signaling in chondrogenic differentiation of the BMSCs. Mutual inhibition exists between canonical and noncanonical Wnt signaling in BMSCs under pressure. CONCLUSION: Wnt signaling participates in the pressure-promoted chondrogenesis of the BMSCs co-cultured with PRF, with canonical and noncanonical pathways playing distinct roles during the process.


Assuntos
Células-Tronco Mesenquimais , Fibrina Rica em Plaquetas , Células Cultivadas , Condrogênese , Células-Tronco Mesenquimais/metabolismo , Fibrina Rica em Plaquetas/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
9.
Nat Commun ; 13(1): 1537, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318302

RESUMO

Hyperactive Notch signalling is frequently observed in breast cancer and correlates with poor prognosis. However, relatively few mutations in the core Notch signalling pathway have been identified in breast cancer, suggesting that as yet unknown mechanisms increase Notch activity. Here we show that increased expression levels of GIT1 correlate with high relapse-free survival in oestrogen receptor-negative (ER(-)) breast cancer patients and that GIT1 mediates negative regulation of Notch. GIT1 knockdown in ER(-) breast tumour cells increased signalling downstream of Notch and activity of aldehyde dehydrogenase, a predictor of poor clinical outcome. GIT1 interacts with the Notch intracellular domain (ICD) and influences signalling by inhibiting the cytoplasm-to-nucleus transport of the Notch ICD. In xenograft experiments, overexpression of GIT1 in ER(-) cells prevented or reduced Notch-driven tumour formation. These results identify GIT1 as a modulator of Notch signalling and a guardian against breast cancer growth.


Assuntos
Neoplasias da Mama , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Feminino , Humanos , Recidiva Local de Neoplasia , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais
10.
Nanomedicine ; 43: 102553, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35337985

RESUMO

The structural DNA nanotechnology holds great potential application in bioimaging, drug delivery and cancer therapy. Herein, an intelligent aptamer-incorporated DNA nanonetwork (Apt-Nnes) is demonstrated for cancer cell imaging and targeted drug delivery, which essentially is a micron-scale pattern with the thickness of double-stranded monolayer. Cancer cell-surface receptors can make it perform magical transformation into small size of nanosheet intermediates and specifically enter target cells. The binding affinity of Apt-Nnes is increased by 3-fold due to multivalent binding effect of aptamers and it can maintain the structural integrity in fetal bovine serum (FBS) for 8 h. More interestingly, target cancer cells can cause the structural disassembly, and each resulting unit transports 4963 doxorubicin (Dox) into target cells, causing the specific cellular cytotoxicity. The cell surface receptor-mediated disassembly of large size of DNA nanostructures into small size of fractions provides a valuable insight into developing intelligent DNA nanostructure suitable for biomedical applications.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , DNA/química , Doxorrubicina , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico
11.
Mol Plant Pathol ; 23(5): 707-719, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35184365

RESUMO

Viral suppressors of RNA silencing (VSRs) are encoded by diverse viruses to counteract the RNA silencing-mediated defence mounted by the virus-infected host cells. In this study, we identified the NSs protein encoded by tomato zonate spot virus (TZSV) as a potent VSR, and used a potato virus X (PVX)-based heterologous expression system to demonstrate TZSV NSs as a viral pathogenicity factor that intensified PVX symptoms in Nicotiana benthamiana. We then used a yeast two-hybrid screen to identify the suppressor of gene silencing 3 protein of N. benthamiana (NbSGS3), a known component of the plant RNA silencing pathway, as an interaction partner of TZSV NSs. We verified this interaction in plant cells with bimolecular fluorescence complementation, subcellular colocalization, and co-immunoprecipitation. We further revealed that the NSs-NbSGS3 interaction correlated with the VSR activity of TZSV NSs. TZSV NSs reduced the concentration of NbSGS3 protein in plant cells, probably through the ubiquitination and autophagy pathways. Interestingly, TZSV infection, but not NSs overexpression, significantly up-regulated the NbSGS3 transcript levels. Our data indicate that TZSV NSs suppresses RNA silencing of the host plant and enhances TZSV pathogenicity through its interaction with NbSGS3. This study reveals a novel molecular mechanism of NSs-mediated suppression of plant host antiviral defence.


Assuntos
Potexvirus , Solanum lycopersicum , Doenças das Plantas/genética , Plantas , Interferência de RNA , Nicotiana
12.
Microb Biotechnol ; 15(4): 1178-1188, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34788498

RESUMO

The potato virus Y (PVY) is a plant virus that causes massive crop losses globally, especially in Solanaceae crops. A strain of the plant growth-promoting rhizobacterium (PGPR), Serratia marcescens-S3 was found to inhibit PVY replication in Nicotiana benthamiana. However, there have been no in-depth studies demonstrating the underlying mechanism. In the current study, we found that ubiquitination of NbHsc70-2 is an important way for Serratia marcescens-S3 to trigger induced systemic resistance (ISR). After the treatment with S. marcescens-S3, the protein level of NbHsc70-2 reduced significantly. Inhibiting of ubiquitination increased the accumulation of NbHsc70-2 in plants and reduced S. marcescens-S3-mediated resistance to PVY. Furthermore, transgenic engineered Nicotiana benthamiana NbHsc70-2KO and NbHsc70-2USM were constructed using CRISPR-Cas9-mediated NbHsc70-2 knock-out and ubiquitination respectively. S. marcescens-S3 significantly reduced the inhibition of NbHsc70-2 protein accumulation in NbHsc70-2KO and NbHsc70-2USM . The virulence of PVY was stronger in NbHsc70-2USM than the wild-type plants. These results showed that S. marcescens-S3 increases the ubiquitination of NbHsc70-2 to inhibit the recruitment of molecular chaperone NbHsc70-2 to reduce its replication and infection of PVY.


Assuntos
Potyvirus , Chaperonas Moleculares , Doenças das Plantas , Potyvirus/fisiologia , Serratia marcescens/genética , Nicotiana/genética , Ubiquitinação
13.
ACS Nano ; 15(12): 19211-19224, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34854292

RESUMO

Abnormal expression of miRNAs is often detected in various human cancers. DNAzyme machines combined with gold nanoparticles (AuNPs) hold promise for detecting specific miRNAs in living cells but show short circulation time due to the fragility of catalytic core. Using miRNA-21 as the model target, by introducing a circular bulging DNA shield into the middle of the catalytic core, we report herein a self-protected DNAzyme (E) walker capable of fully stepping on the substrate (S)-modified AuNP for imaging intracellular miRNAs. The DNAzyme walker exhibits 5-fold enhanced serum resistance and more than 8-fold enhanced catalytic activity, contributing to the capability to image miRNAs much higher than commercial transfection reagent and well-known FISH technique. Diseased cells can accurately be distinguished from healthy cells. Due to its universality, DNAzyme walker can be extended for imaging other miRNAs only by changing target binding domain, indicating a promising tool for cancer diagnosis and prognosis.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Nanopartículas Metálicas , MicroRNAs , Animais , DNA Catalítico/metabolismo , DNA Circular , Ouro , Camundongos , MicroRNAs/genética
14.
Front Microbiol ; 12: 680658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589062

RESUMO

Pepper vein yellows virus (PeVYV) is a newly recognized Polerovirus extracted from Chinese pepper. The symptoms of PeVYV-infested pepper plants comprise intervein yellow staining, leaf curl formation and other malformations, and leaf internodal shrinkage, but the roles of the viral proteins remain undetermined. The P0 protein of the genus Polerovirus has established post-transcriptional gene silencing (PTGS) activity. This investigation focused on the PeVYV-encoded P0 protein and assessed its potential virulence capacity, PTGS activity, and tendencies to localize in the nucleus. This study revealed that P0 influenced the pathogenic properties of a specific heterologous potato virus X. In addition, P0 proteins impaired local gene silencing, although they did not regulate generalized gene silencing within Nicotiana benthamiana 16c plants. Furthermore, P0 proteins localized mainly in the nucleus, particularly in the nucleolus. P0 deletion mutagenesis demonstrated that the F-box motif (56-72 amino acids, AAs) of P0 was essential for symptom determination, inhibition of PTGS, and subcellular localization. Mutation analysis of the F-box motif of P0 protein indicated that AA 57 of the P0 protein was a pivotal site in symptom development and that AA 56 of the P0 protein was indispensable for inhibiting PTGS and subcellular localization. The outcomes obtained here suggest that further studies should be conducted on the molecular mechanisms of amino acids of the F-box domain of P0 protein in the interaction of PeVYV with plants.

15.
Front Microbiol ; 12: 662352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936020

RESUMO

Tombusvirus-like associated RNAs (tlaRNAs) are positive-sense single-stranded RNAs found in plants co-infected with some viruses of the genus Polerovirus. Pod pepper vein yellows virus (PoPeVYV) was recently reported as a new recombinant polerovirus causing interveinal yellowing, stunting, and leaf rolling in Capsicum frutescens plants at Wenshan city, Yunnan province, China. The complete genome sequence of its associated RNA has now been determined by next-generation sequencing and reverse transcription (RT) polymerase chain reaction (PCR). PoPeVYV-associated RNA (PoPeVYVaRNA) (GenBank Accession No. MW323470) has 2970 nucleotides and is closely related to other group II tlaRNAs, particularly tobacco bushy top disease-associated RNA (TBTDaRNA, GenBank Accession No. EF529625). In infection experiments on Nicotiana benthamiana and C. frutescens plants, synergism between PoPeVYVaRNA and PoPeVYV was demonstrated, leading to severe interveinal yellowing of leaves and stunting of plants. The results provide further information on the genetic and biological properties of the various agents associated with pepper vein yellows disease (PeVYD).

16.
J Zhejiang Univ Sci B ; 21(10): 811-822, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33043646

RESUMO

Pepino mosaic virus (PepMV) causes severe disease in tomato and other Solanaceous crops around globe. To effectively study and manage this viral disease, researchers need new, sensitive, and high-throughput approaches for viral detection. In this study, we purified PepMV particles from the infected Nicotiana benthamiana plants and used virions to immunize BALB/c mice to prepare hybridomas secreting anti-PepMV monoclonal antibodies (mAbs). A panel of highly specific and sensitive murine mAbs (15B2, 8H6, 23D11, 20D9, 3A6, and 8E3) could be produced through cell fusion, antibody selection, and cell cloning. Using the mAbs as the detection antibodies, we established double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), Dot-ELISA, and Tissue print-ELISA for detecting PepMV infection in tomato plants. Resulting data on sensitivity analysis assays showed that both DAS-ELISA and Dot-ELISA can efficiently monitor the virus in PepMV-infected tissue crude extracts when diluted at 1:1 310 720 and 1:20 480 (weight/volume ratio (w/v), g/mL), respectively. Among the three methods developed, the Tissue print-ELISA was found to be the most practical detection technique. Survey results from field samples by the established serological approaches were verified by reverse transcription polymerase chain reaction (RT-PCR) and DNA sequencing, demonstrating all three serological methods are reliable and effective for monitoring PepMV. Anti-PepMV mAbs and the newly developed DAS-ELISA, Dot-ELISA, and Tissue print-ELISA can benefit PepMV detection and field epidemiological study, and management of this viral disease, which is already widespread in tomato plants in Yunnan Province of China.


Assuntos
Potexvirus/metabolismo , Solanum lycopersicum/virologia , Animais , Anticorpos Monoclonais/imunologia , China , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Hibridomas , Camundongos , Camundongos Endogâmicos BALB C , Doenças das Plantas/virologia , Sensibilidade e Especificidade , Nicotiana
17.
ACS Nano ; 14(8): 9572-9584, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806042

RESUMO

Real-time in situ monitoring of low-abundance cancer biomarkers (e.g., miRNAs and proteins) in living cells by nonenzymatic assembly entirely from original DNA probes remains unexplored due to an extremely complex intracellular environment. Herein, a nonenzymatic palindrome-catalyzed DNA assembly (NEPA) technique is developed to execute the in situ imaging of intracellular miRNAs by assembling a three-dimensional nanoscale DNA spherical structure (NS) with low mobility from three free hairpin-type DNAs rather than from DNA intermediates based on the interaction of designed terminal palindromes. Target miRNA was detected down to 1.4 pM, and its family members were distinguished with almost 100% accuracy. The subcellular localization of NS products can be visualized in real time. The NEPA-based sensing strategy is also suitable for the intracellular in situ fluorescence imaging of cancer-related protein receptors, offering valuable insight into developing sensing protocols for understanding the biological function of vital biomolecules in disease pathogenesis and future therapeutic applications.


Assuntos
MicroRNAs , Nanoestruturas , DNA , Diagnóstico por Imagem , Fluorescência
18.
Angew Chem Int Ed Engl ; 59(40): 17540-17547, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32613705

RESUMO

DNA nanostructures have shown potential in cancer therapy. However, their clinical application is hampered by the difficulty to deliver them into cancer cells and susceptibility to nuclease degradation. To overcome these limitations, we report herein a periodically ordered nick-hidden DNA nanowire (NW) with high serum stability and active targeting functionality. The inner core is made of multiple connected DNA double helices, and the outer shell is composed of regularly arranged standing-up hairpin aptamers. All termini of the components are hidden from nuclease attack, whereas the target-binding sites are exposed to allow delivery to the cancer target. The DNA NW remained intact during incubation for 24 h in serum solution. Animal imaging and cell apoptosis showed that NWs loaded with an anticancer drug displayed long blood-circulation time and high specificity in inducing cancer-cell apoptosis, thus validating this approach for the targeted imaging and therapy of cancers.


Assuntos
Aptâmeros de Nucleotídeos/química , DNA/química , Nanofios/química , Nanomedicina Teranóstica , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Aptâmeros de Nucleotídeos/metabolismo , DNA/metabolismo , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Endocitose , Corantes Fluorescentes/química , Células HeLa , Humanos , Camundongos , Microscopia Confocal , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Transplante Heterólogo
19.
Med Sci Monit ; 26: e923559, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32406388

RESUMO

BACKGROUND MicroRNAs (miRNAs) have a significant regulatory effect on the proliferation, migration, and invasion of cells, and have been widely reported to have oncogenic or tumor-suppressive impacts on various tumors. In the present study we assessed the regulation and function of miR-20a on colorectal cancer (CRC) cell lines. MATERIAL AND METHODS qPCR was used to quantify miR-20a expression. Luciferase reporter assay was conducted to confirm Foxj2 3'UTR associations. In addition, the function of miR-20a and Foxj2 in CRC was detected using MTT, colony formation, transwell assays, and cell cycle analysis. RESULTS Our data revealed that miR-20a expression was elevated in the CRC cell lines, and cell migration, proliferation, and invasion abilities were promoted by the overexpression of miR-20a. Moreover, Foxj2 was authenticated as a direct target gene of miR-20a in CRC cells. Furthermore, we found that the ectopic Foxj2 dramatically suppressed miR-20a-promoted proliferation, migration, invasion, and xenografts in vitro and in vivo, and induced cell cycle arrest at G1 stage. CONCLUSIONS Our results showing the roles of miR-20a/Foxj2 in carcinogenesis of CRC may help improve treatment of CRC.


Assuntos
Neoplasias Colorretais/genética , Fatores de Transcrição Forkhead/genética , MicroRNAs/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , China , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Metástase Neoplásica/genética
20.
BMC Microbiol ; 20(1): 72, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228456

RESUMO

BACKGROUND: Plant viruses move through plasmodesmata (PD) to infect new cells. To overcome the PD barrier, plant viruses have developed specific protein(s) to guide their genomic RNAs or DNAs to path through the PD. RESULTS: In the present study, we analyzed the function of Pepper vein yellows virus P4 protein. Our bioinformatic analysis using five commonly used algorithms showed that the P4 protein contains an transmembrane domain, encompassing the amino acid residue 117-138. The subcellular localization of P4 protein was found to target PD and form small punctates near walls. The P4 deletion mutant or the substitution mutant constructed by overlap PCR lost their function to produce punctates near the walls inside the fluorescent loci. The P4-YFP fusion was found to move from cell to cell in infiltrated leaves, and P4 could complement Cucumber mosaic virus movement protein deficiency mutant to move between cells. CONCLUSION: Taking together, we consider that the P4 protein is a movement protein of Pepper vein yellows virus.


Assuntos
Biologia Computacional/métodos , Nicotiana/virologia , Vírus de Plantas/fisiologia , Proteínas Virais/metabolismo , Algoritmos , Cucumovirus/fisiologia , Mutação , Folhas de Planta/virologia , Plasmodesmos/metabolismo , Plasmodesmos/virologia , Domínios Proteicos , Nicotiana/metabolismo , Proteínas Virais/química , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA